

BIOSYNTHESIS OF PREGNENOLONE FROM CHOLESTEROL IN *PUNICA GRANATUM*

ANTHONY M. GAWIENOWSKI and CAROL C. GIBBS

Department of Biochemistry, University of Massachusetts, Amherst, Massachusetts

(Received 13 May 1969)

Abstract—Following administration of cholesterol-4- ^{14}C to leaves of *Punica granatum* plants, radioactive pregnenolone was isolated and identified by thin-layer and gas chromatography and the formation of the acetate derivative.

INTRODUCTION

THE PRESENCE of cholesterol in higher plants was first reported by Johnson *et al.*¹ Since then, this sterol, which had earlier been thought to be a characteristic animal product, has since been detected in a large variety of plants.^{2,3} The biosynthesis of pregnenolone from cholesterol has been demonstrated by Bennett and Heftmann⁷ in *Haplopappus heterophyllus* and by Caspi *et al.*⁵ in *Digitalis purpurea*. Pregnenolone has been found in four plants.⁶⁻⁹ The conversion of pregnenolone to progesterone has been demonstrated in *Holarrhena floribunda*¹⁰ and in *D. lanata*.¹¹ This study is an attempt to show the *in vivo* conversion of cholesterol-4- ^{14}C to pregnenolone during the growth and development of the plant *Punica granatum*.

RESULTS

Following extraction the various fractions were counted for total radioactivity. Of the 8.4×10^6 cpm applied to the leaves the fractions contained: (A) 4.6×10^3 cpm, (B) 4.4×10^3 cpm, and (NF) 3.4×10^6 cpm, representing a 50 per cent recovery of the administered cholesterol-4- ^{14}C . The ketonic fraction contained 4.6×10^5 cpm, and the non-ketonic fraction 2.0×10^6 cpm, representing 73 per cent recovery from the neutral fraction. The ketonic fraction was divided into four aliquots for analysis:

1. The sample was run on TLC in system I, and the pregnenolone (R_f 0.34) was eluted and counted. The acetate derivative of this pregnenolone was formed and chromatographed in system V, giving a pregnenolone acetate spot (R_f 0.57) with radioactivity and having a peak on the gas chromatograph at 12.6 min, the same as pregnenolone acetate.

¹ D. F. JOHNSON, R. D. BENNETT and E. HEFTMANN, *Phytochem.* **5**, 231 (1966).

² E. HEFTMANN, *Lloydia* **30**, 209 (1967).

³ E. HEFTMANN, *Lloydia* **31**, 293 (1968).

⁴ A. M. GAWIENOWSKI and C. C. GIBBS, *Steroids* **12**, 545 (1968).

⁵ E. CASPI, D. O. LEWIS, D. M. PIATAK, K. THIMANN and A. WINTER, *Experientia* **22**, 506 (1966).

⁶ R. D. BENNETT, SHUI-TZE KO and E. HEFTMANN, *Phytochem.* **5**, 231 (1966).

⁷ R. D. BENNETT and E. HEFTMANN, *Phytochem.* **5**, 747 (1966).

⁸ R. TSCHESCHE and G. SNATZKE, *Ann. Chem.* **636**, 105 (1960).

⁹ R. ELBER, cited in J. VON EUV and T. REICHSTEIN, *Helv. Chim. Acta* **47**, 711 (1964).

¹⁰ R. D. BENNETT and E. HEFTMANN, *Science* **149**, 652 (1965).

¹¹ H. H. SAUER, R. D. BENNETT and E. HEFTMANN, *Phytochem.* **6**, 1521 (1967).

2. After chromatography in system I, pregnenolone (1.2×10^4 cpm) was isolated. The acetate derivative of this pregnenolone contained radioactivity after TLC in system V. It also gave a peak on the gas chromatography at 11.4 min, the same as the standard, and on another column (2.5 per cent SE-30) it gave a peak at 19.9 min, the same as the standard.

3. Following chromatography in system I in the first dimension, and systems III and II in the second dimension, radioactivity was associated with pregnenolone. On a 2.5 per cent SE-30 column this pregnenolone had a retention time of 14.3 min, the same as the standard. Following acetylation and development in system V the retention time of the sample and standard on a 2.5 per cent SE-30 column was 19.0 min and it was radioactive.

4. 300 μ g of pregnenolone was added to this sample before chromatography in system I. The radioactive pregnenolone was transferred to another plate and run in system II giving a pregnenolone spot (R_f , 0.47). This pregnenolone was acetylated and one-half run in system V was radioactive and had a retention time of 11.4 min, the same as the standard. The other half run in system IV (R_f , 0.48) had a retention time of 11.4 min and was also radioactive.

The total radioactivity associated with pregnenolone in the four aliquots was 3.2×10^4 cpm, and with pregnenolone acetate it was 4.6×10^3 cpm. The range of radioactivity in the four aliquots was from 1.2×10^4 cpm to 3.5×10^3 cpm for pregnenolone and from 1.25×10^3 cpm to 3.2×10^2 cpm for pregnenolone acetate.

DISCUSSION

Heftmann³ believes that the pathways of steroid biosynthesis in plants are similar to those of animals. When we found cholesterol and progesterone¹² and, especially, estrone in apple seeds,¹³ we became interested in research on the pomegranate plant. Its seeds are the richest plant source of estrogens yet found (17 mg/kg).¹⁴ Since the biosynthesis of pregnenolone from cholesterol has been shown in two different plant^{4, 5} it seemed logical that we study this biosynthetic pathway in the pomegranate plant. Our per cent conversion of cholesterol-4-¹⁴C to radioactive pregnenolone acetate was 0.053 while that of Bennett and Heftmann⁷ was 0.041.

EXPERIMENTAL

Materials

Pomegranate (*Punica granatum*) plants were germinated from seeds of a single fruit and planted in soil for 4 months until they reached a height of 50–55 cm. Cholesterol-4-¹⁴C with a specific activity of 146 μ c/mg (New England Nuclear Co.) was applied to the leaves of twelve plants at five different times over a period of 2 weeks according to the procedure of Bennett and Heftmann.¹⁴ The total amount of cholesterol-4-¹⁴C applied to the twelve plants was 8.4×10^6 cpm.

Procedure

Three days after the last treatment the leaves (21 g) were homogenized with methanol. The homogenate was filtered and the filter cake was extracted for 8 hr with benzene:methanol (3:1), followed by 5 hr with acetone. These extracts were added to the original filtrate, evaporated to dryness, the residue refluxed with benzene:water:conc. HCl (25:55:20) for 3 hr and the benzene and aqueous phases were separated. The latter was extracted with CH_2Cl_2 which was washed twice with water and evaporated to dryness. The residue was dissolved in benzene, added to the original benzene extract, and extracted twice with 2 per cent NaHCO_3 (A), washed with water and twice with 0.5 N NaOH, and then with 0.5 N HCl (B). The neutral fraction (NF) was separated into ketonic and non-ketonic fractions with Girard's Reagent T(2).

Pregnenolone, isolated from the ketonic fraction by TLC was acetylated with 0.2 ml pyridine and 0.2 ml acetic anhydride at room temperature overnight.

¹² A. M. GAWIENOWSKI and C. C. GIBBS, *Phytochem.* **8**, 685 (1969).

¹³ R. A. MASARACCHIA and A. M. GAWIENOWSKI, *Steroids* **11**, 718 (1968).

¹⁴ R. D. BENNETT and E. HEFTMANN, *Phytochem.* **4**, 577 (1965).

Silica gel (Camag, DF-5) with fluorescent indicator was used for the application of a $0.3\ \mu$ layer to 200-mm square plates for TLC. Several systems were used for the isolation and purification of the neutral ketonic fraction: I- CH_2Cl_2 -MeOH (97:3); II- CH_2Cl_2 -ether (5:2); III-hexane-EtOAc (5:2); IV- CH_2Cl_2 -acetone (99:1); V-benzene: EtOAc (4:1). Samples and co-chromatographed standards were applied as spots and following development were eluted from the silica gel according to the method of Masaracchia and Gawienowski.¹³

A Barber Colman 5000 series gas chromatograph with a flame ionization detector and a U-shaped 6 ft \times $\frac{1}{8}$ in. glass column was used. Samples purified by TLC were analyzed on a 3 per cent SE-30, Chromosorb W-DMCS, 80/100 mesh column at 230° with nitrogen maintained at 20 psi, unless mentioned otherwise in the Results section. Retention times were calculated by comparing extract peaks with a standard.

Samples were counted in a Packard Tri-Carb Liquid Scintillation Spectrometer Model 3310. 9 g of PBD and 0.05 g of POPOP/l. of toluene was used as the scintillation fluid.

Acknowledgement—This work was supported in part by the training grant HD-204 from the National Institute of Child Health and Human Development. We also wish to thank Mr. William Dean for his technical assistance.